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I. INTRODUCTION

The motivations for studying relativistic plasmas are numerous. Nuclear
matter at very high densities is expected, from the asymptotic freedom of
QCD, to be in the form of a plasma of deconfined quarks and gluons.(3)

Such plasmas were present in the early universe and may exist in the cores
of neutron stars; current experiments aim to produce and study them in
collisions of ultrarelativistic nuclei.(4) Electromagnetic plasmas are of
interest as Abelian models of quark-gluon plasmas. Problems of relativistic
plasmas are also closely related to current issues in condensed matter
theory. In gauge fields models of high Tc superconductors and of the frac-
tional quantum Hall effect,(5) the magnetic component of the interaction
plays a fundamental role; this component is suppressed in normal metals
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by a factor (vFjc)2 (where vF is the Fermi velocity), but is important in
both strongly correlated systems and relativistic gases.

The thermodynamics and quasiparticle modes of relativistic plasmas
have been the subject of much earlier work. In order to understand the
equation of state of interacting relativistic plasmas, the thermodynamic
potential has been calculated up to the first five orders of perturbation
theory in the coupling constant.(6–8) Studies of the plasma microscopic
properties have also revealed the existence of well-defined quasiparticle
excitations and collective modes.(9, 10) In particular, the fermionic spectrum
has certain remarkable features not encountered in non-relativistic plasmas:
the spectrum has a gap at zero momentum, and splits into two branches
at small momenta.(10)

Many physical quantities of relativistic plasmas are infrared divergent
when evaluated in perturbation theory, as a consequence of the lack of
static screening of magnetic interactions. Taking into account dynamical
screening of such interactions at long wavelengths (the anomalous skin
effect'11'), equivalent to including effects of Landau damping in the photon
polarization operator, eliminates the divergences in transport coeffi-
cients'12' and in the rate of energy loss of fast particles.(13) Polarization
effects also modify the interaction between low energy quasiparticle modes.
The "Hard Thermal Loop" expansion scheme, proposed by Braaten and
Pisarski,(14) handles the effects of the medium diagrammatically by intro-
ducing vertex and self-energy corrections at small four-momentum. This
description can also be cast in terms of kinetic equations.'15'

Even after taking into account corrections from medium effects, dif-
ficulties still remain. Due to a lack of static screening in the magnetic com-
ponent of gauge interactions, the fermion quasiparticle damping rate at finite
temperatures is still divergent in perturbation theory. Blaizot and Iancu have
shown(16) that in QED at finite temperatures, including multiple scattering
a la Bloch-Nordsieck in the vacuum leads to well-defined, divergence-free,
quasiparticle modes. This structure of the fermion propagator also appears in
gauge field models of the fractional quantum Hall effect.'17' However, it is
not clear whether the infrared structure in the fermion spectrum actually
affects physical observables such as transport coefficients and the specific
heat.(18) Even quantities that are well-controlled order by order in
perturbation theory can cause difficulties. The (asymptotic) expansion of
the thermodynamical potential converges very slowly, which has lead to
suggestions to reorganize the perturbation expansion in terms of dressed
fermion states rather than those of a free interacting gas.(19)

Our aim here is to give a general framework for analyzing the effects
of different characteristics of the fermion spectrum, the presence of a gap
and the infrared structure, on thermodynamic quantities. Our analysis is
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based on p-derivable conserving approximations, whose history dates
back to the work of Luttinger and Ward(20) and Baym,(2) in the context of
quantum transport theories. Conserving approximations for systems that
develop non-zero expectation values of their fields were introduced by
Gotze and Wagner(21) for studying Bose condensed systems, and later
applied by Baym and Grinstein,(22) who discussed, in a self-consistent
framework, phase transitions and symmetry restoration at finite tem-
perature in relativistic field theories. Related approaches using self-consis-
tent and variational Hartree-Fock approximations have later been
proposed for deriving finite temperature effective potentials.(23, 24) Among
various applications, conserving-approximation techniques in the study of
liquid 3He have allowed one to interpret the T3 log T term in the low tem-
perature specific heat in terms of repeated scattering of particle-hole
pairs.(25, 26) A generalization of these techniques to relativistic plasmas at
zero temperature provided a controlled expansion of the ground state
energy of electromagnetic and quark plasmas up to order g4.(7) In this
latter work, the free energy is given as a functional of the fully dressed
fermion and boson propagators as well as fully dressed vertices. In our
present analysis, we keep track of both fermion and boson elementary
excitations and treat both the matter and interaction fields as dynamical
quantities. This allows us to decompose the entropy in the form

II. THE THERMODYNAMIC POTENTIAL

We first review p-derivable approximations in non-relativistic field
theories.(2) The thermodynamical potential of a non-relativistic Fermi
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where the entropy densities of free fermion and boson gases, af= —f log f
- ( 1 – f)log(l –f) and ab= – n log n + (l +n)log(l +n) are here
weighted by the spectral densities As and Bs of the interacting system.

In this paper, we develop P-derivable approximations for a hot
relativistic QED plasma, a gas of electrons and positrons in a thermal bath
of photons at temperature T, where T»m, although we expect the
approach to be valid also for non-Abelian theories including QCD. For
simplicity, we set the electron mass, m, to zero. We then illustrate the
technique by computing the entropy within the one-loop approximation,
and comment briefly on the general structure of the entropy spectral den-
sities As and Bs.



where E is the fermion self-energy. Pictorially, this relation means that
removing one of the n fermion lines in a given p-diagram produces a self-
energy diagram with n – 1 fermion lines. Since there are n ways of removing
a line, no symmetry factor appears on the right side of Eq. (4). The self-
energy E is here a functional of the fully dressed propagator G, and it
satisfies Dyson's equation G–1 = G0

–1 – E, where the bare propagator Go is
given by G0

–1 = Sa^(wn~ p2/2m) for a non-relativistic system of fermions.
The principle behind conserving approximations is the following: one

selects a particular subset of diagrams for the functional, p a [G] , from
which one deduces an approximate self-energy functional Za = d&alG~\/SG.
Dyson's equation provides then a self-consistent relation for the approxi-
mate propagator Ga. As shown in ref. 2, this approximation for G leads to
current densities and an energy-momentum tensor that obey the continuity
equations expressing charge, particle number, energy and momentum con-
servation. The basic ingredient of the approximation scheme of Eq. (2)
which enforces conservation laws is the stationarity property of Q, SQ = 0,
upon a variation of G that keeps Go constant, as can easily be checked
from Eqs. (2) and (4).

where 1 is shorthand for the coordinates (rl, r1), while 1 + indicates that
the time variable in the second argument of X is t1 + i0 + . The functional
0 [ G ] is defined as the sum of all skeleton graphs contributing to the
diagrammatic expansion of the potential Q, where all lines are fully dressed
propagators, G, instead of bare ones, Go. In contrast with the familiar
diagrammatic expansion of a scattering diagram in the vacuum, the expan-
sion for P[G] contains a symmetry factor 1/n for each diagram with n
fermion lines. Upon variation of G, the functional p[g] satisfies the
relation

Here B = l/T and the symbol tr denotes a trace over spins and coordinates.
In four-dimensional notation,

system can be written as a functional of the fully dressed fermion
propagator G as,
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for arbitrary X.
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We now generalize this approach to relativistic field theories, illu-
strating the method for electromagnetism, where the Lagrangian is

In QED, the free energy BQ is given in terms of the fully dressed electron
and photon propagators G and D, by

Here, the functional p[G, D] is the sum of all the skeleton diagrams of the
thermodynamic potential, expressed in terms of fully dressed G and D
instead of the bare electron and photon propagators, Go and Do. Under a
simultaneous variation of the propagators G and D,

as one easily sees by removing an electron line or a photon line in a given
diagram contributing to p. The electron self-energy Z[G, Z)] and the
polarization operator p[G, D] are here functionals of G and D and satisfy
Dyson's equations

To prove that the functional W[G, D] in Eq. (6) is identical to the
thermodynamic potential BO of an electromagnetic plasma, we scale the
coupling by a parameter X in the interaction Lagrangian,

We work in Coulomb gauge. In the non-interacting limit, A-»0, both E
and P vanish, and we recover the result for a gas of free electrons and
photons

where only transverse polarizations (subscript T) appear in the photon
contribution.(27) To prove that BO= W[G, D], it suffices to show that



under a variation that does not affect Go, Do, or the coupling constant, Xe.
Therefore, in the derivative of W with respect to A only the explicit
dependence in the coupling constant contributes, and we find

where the derivative on the right side is taken at fixed G and D.
Next, to compute the right side of Eq. (17), we use the invariance

properties of p. As each vertex of a given (p-diagram is connected to two
electron lines and one photon line, the functional P remains constant
under the scaling transformations
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Consider first the quantity B dQx/dX. From the definition of the ther-
modynamical potential,

(where Q is the charge operator, the Hamiltonian is HX = HO — j d3x yint,
and tr denotes a sum over all the quantum states of the system), we find

Here, (X) denotes the thermal average tr[exp(— B(Hx — fiQ)) X]/
tr[exp(-/J(HA-fiQ))]. We evaluate next dW[Gx, £>A]/3A. A given
diagram contributing to p[GX, DX] depends on k implicitly through the
electron and photon propagators, Gk and Dx, but also explicitly through
the coupling Xe, Eq. (10). However, the terms arising from the dependence
on Xe through Gk and Dx cancel in the partial derivative, since W[G, D]
is stationary under a variation of G and D. From the definition of
P[G, D], the variation of W is (cf. Eqs. (6) and (7))

Using 6 log( — y0G) = — G 8G –1 and Dyson's equation, SG–1= – 8E, as
well as similar relations for the photon propagators, we find that



where the third arguments of P on the right sides are the scaling factors of
the coupling constant. Taking the derivative of Eq. (18) with respect to s,
one finds

Therefore,

which completes the proof.
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which, for 5= 1, gives

Similarly, the derivative of Eq. (19) with respect to s gives

Therefore, Eqs. (22), (21) and (17) give

To complete the proof, we relate Tr ZxGkjX to (Hint), starting with
the equation of motion for the time-ordered fermion propagator Gx{1, 1') =
–i<Tp(l) p(1')>, which, from the Lagrangian in Eq. (5), is

Comparing to Dyson's equation in real space

we identify
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III. THE ENTROPY

We now turn to the derivation of the entropy of the plasma in terms
of the fully dressed propagators G and D. The entropy is given by the
derivative

at constant volume V and chemical potential u. We work in frequency-
momentum space, where the electron and photon propagators have the
spectral representations

where the subscripts L and T denote longitudinal and transverse polariza-
tions. The Matsubara frequencies are con = in(2n + 1) T+u for electrons
and mn = 2innT for photons. The functional W[ G, D] depends therefore on
the temperature through the spectral functions A and B, through the com-
plex frequencies wn, as well as through factors T at the vertices.(28) Because
W[G, D] is stationary under a simultaneous variation of the propagators
G and D, Eq. (16), it is also stationary under variations of A and B that
ignore the other temperature dependences. Thus, the contribution to the
entropy coming from the temperature derivatives of the spectral densities
alone vanishes. In the following, we therefore evaluate every derivative with
respect to the temperature at constant A and B.

We start from the expression of the thermodynamical potential
BO= W[G, D], Eq. (6). Evaluating the frequency sum by standard con-
tour integration techniques,(28) we find

where f(wp) = (exp(P(cop-/i)) + 1)– 1 , and w(co,) = (exp(/fcu,)-1) ' are
the Fermi and Bose occupation factors, Tr is a trace over spinor indices,
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the degeneracy factors gt are gL= 1 for longitudinal modes and gT=2 for
transverse ones. Here, Im[F], means Im[F(co + i0 +)]. The integration
over coq is a principal value integral, since in deforming the contour integral
onto the real axis, one needs to go around the (Bose) frequency wn = o = 0.
Differentiating Eq. (32) with respect to T at constant A and B, we decom-
pose the entropy into a sum of three terms,

where

In this decomposition, the terms Sf and Sb are the contributions from the
electron and photon elementary modes, while 5' is a correction term arising
from the interactions.

We illustrate the derivation in the one-loop approximation, which
corresponds to taking the diagram 0 depicted in Fig. 1, and the self-energy
diagrams of Fig. 2. Applying the usual Feynman rules, and carrying the
sum over frequencies, we find



Fig. 2. (a) One-loop electron self-energy, (b) One-loop photon self-energy.

In the one-loop approximation S' in fact vanishes. (A similar result
was observed in the SPA approximation in liquid 3He by Riedel.(26)) To see
how the various terms in Eq. (36) cancel, we first note that the same

The terms pHF and EHF in Eqs. (37) and (38) arise from the static term
1/q2 in the photon propagator of Eq. (31),

where f = f(wp), f'=f(wp') and n = n{a>q), z is complex, p' = p + q, and
the matrix elements Pt and Sl are given by

Fig. 1. p in the one-loop approximation.
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Fig. 3. p-diagram to explicit order e4. The dashed lines illustrate the cuts that give rise to
a non-vanishing term in S'.

Thus the correction term 5' vanishes in the one-loop approximation.
This cancelation takes place only in the lowest order diagram for P.

A general analysis of P diagrams in the context of non-relativistic normal
Fermi liquids(25) shows that the contributions to S' come only from those
graphs that have at least two vanishing energy denominators. These terms

where the £ and fHF denote combinations of statistical factors and their
T derivatives. Using Eqs. (37) through (45), symmetrizing the contribu-
tions of ReEHF and Re E by the transformation (wp, t)*-*((op>, p')
(coq, q) <-> (— a)q, — q), and using the fact that the spectral functions Bt are
odd functions of their arguments, we have

combination of matrix elements appears in each term of 5". Since
lm[G(cop + i0 + U = -A(top,p)/2 and Im[D1(wq + i0 + )] = -B1(wq, q)/2,
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correspond graphically to the set of diagrams that can be cut in three and
only three different pieces when one removes a set of fermion lines.
Generalizing this analysis to the diagrams representing the functional
p[G, D], we see that there is only one possible cut in the diagram of Fig. 1
and it generates the vanishing denominator wq + wp –wp'. The simplest
diagram that contributes to S' is shown in Fig. 3, where we have drawn a
set of cuts that gives two vanishing energy denominators.

IV. INTERPRETATION OF THE ENTROPY FORMULA

A. Exchange and Correlation Entropy

When the two electron lines in Fig. 1 are replaced by bare propagators
and the photon line is replaced by a dressed propagator in the RPA
approximation, i.e., with the lowest order bubble diagram insertions, we
recover the set of diagrams that contribute to the exchange and correlation
terms considered by Akhiezer and Peletminskii.(6) It is instructive to see
how the expression of the entropy that we have derived, Eqs. (34), (35) and
(36), generates these exchange and correlation terms correctly when
expanded in the first few powers of the coupling constant e. We start with
the exchange entropy,(6)
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where P(2) is the photon self-energy of Fig. 2 with two bare electron
propagators. [In this section, we do not write the sum over polarization
states explicitly.] Expanding Eqs. (34) and (35) to first order in e2, we find

Then, expanding Eq. (36) for S' = 0 to order e2, we recognize that the right
side of Eq. (50) is S ( 2 )= -d(T0(2))/dT, which from the identity p(2) =
( - 1/2) Tr n(2)D0 becomes 5 ( 2 ) = (1/2) d( TTr nmD0)/dT= Ss.

The sum of the exchange and the correlation terms that contribute to
the entropy is(6)
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where D is now the propagator in the RPA approximation, £>~' =
DQ X —17(2). Using arguments similar to those we used to derive the iden-
tity S' = 0, we can decompose the last term on the right side into the
following terms:

The two terms on the right side correspond respectively to Sf expanded to
linear order in E[D], and to the first term in Sb. Adding the first term on
the right side of Eq. (51), we have therefore shown that our expression for
S = Sf+ Sb gives the correct correlation term in the entropy when one uses
bare electrons and the RPA photon propagator in Eqs. (34)-(36).

B. Decomposition in Elementary Excitation Modes

The formulae we obtained for the entropy terms Sf, Eq. (34), and Sb,
Eq. (35), allow us to perform a spectral analysis by decomposing Sf and Sb

into integrals over the elementary excitations of the matter field and the
electromagnetic field. We closely follow the derivation that was carried out
by Carneiro and Pethick for liquid 3He.(25) The key is to transform the
temperature derivatives of the statistical factors f and n into the following
expressions

where again af= —/ log /—(1 —/) log(l — / ) and an= —n log n + (1 +n)
log( 1 + n) are the entropy contributions from an electron mode of energy cop

and from a photon mode of frequency coq. Integrating Eqs. (34) and (35) by
parts, we see that Sf and Sb obey the spectral representations
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where As and Bs are defined by

while r{wp, p) = —2 \mZ{<x>p + i 0 +
y p) and L , ( w q , q)= - 2 I m pl,(co?

+ /0+ , q) are the imaginary parts of the electron and photon self-energies.
In deriving Eq. (56), we have used the fact that the photon propagator D
is an even function of its arguments to reduce the domain of integration in
Eq. (56) to positive frequencies coq.

The sum over spinor indices (the trace tr) in Eq. (57) can easily be
decomposed into two contributions, one from electron states with a
chirality equal to their helicity (subscript +) and one from states with
opposite helicities and chiralities (subscript —), by writing

which gives

where the factor 2 is from the spin sum. Hence, As = 2 £ ± As±.
We now turn to the entropy spectral functions As and Bs. In the one-

loop approximation of Fig. 1, the self-energies E and P of Eqs. (38) and
(39) depend on the fully dressed spectral functions A and B. These func-
tions depend in turn on the self-energies E and 77 through Dyson's equa-
tions, Eq. (9). The problem of determining A and B, and the functions As

and Bs, is therefore a self-consistent one. However, we can make general
statements about their structure on the basis of the following arguments. If
the system develops well-defined excitation modes, we expect the functions
A and B to consist of narrow peaks at the locations of the quasiparticles
and collective modes, as well as wide bands of continuum states. The con-
tinuum states that contribute to the spectral function A are composed of
particle-photon states, while those contributing to B are particle-hole and
particle-antiparticle states. In lowest order of perturbation theory, the



continua extend over frequency ranges — p<cop<p and —q <coq<q,
respectively.(9, 10) We expect that in the present self-consistent problem,
interactions only slightly modify these frequency ranges. Furthermore, the
quasiparticle modes lie at frequencies well outside the spectrum of con-
tinuum states, \cop>p and coq>q.

The structure of the entropy spectral functions As and Bs is
qualitatively similar to that of A and B. The photon spectral function Bs,
as we see from its definition, Eq. (58), has a support over the frequency
range of the continuum states contributing to B. It also contains a con-
tribution from the oscillation modes of the electromagnetic field, i.e., the
longitudinal and transverse plasmon modes, with frequencies (oL(q) and
coT(q) and momentum q, where cou T{q) > q. As we show, the spectral func-
tion Bs takes a simple form in the vicinity of these frequencies

where the values of the arc tangent are in the range [— jt/2, n/2~\. The
function L,/{2coq) is the interaction rate of an excitation of frequency oiq.
In the vicinity of the modes, coq =s <uA T(q), Ll/2coq is perturbatively smaller
than the modes frequencies coL r(?),(29) and varies slowly around wL T{q).
Thus, with ReD/ = Re£> /-

1/((Re£rI)2 + (£//2)2), and RtDf1 » ( ' © , -
a>i(q))/Zh we can evaluate the right side of Eq. (58) keeping L, constant,
and derive Eq. (61).

The spectral functions BsJ are therefore sharply peaked around the
mode frequency wt. Comparing to the photon spectral densities B,, which
have a Lorentzian form close to the poles, Bl^(ZlLt)l({coq — oii)2 +
(ZiLi/2)2), we see that Bs_, have a stronger peak and smaller wings. The
electron spectral function, AS = 2J^± As±, has a structure similar to that
of Bs: continuum states contribute at small energies |cop| <p, while As±

exhibit a sharp variation close to the quasiparticle energies coo±,

where Z,–1 =d ReD,/dw q , ZL^a>J(2q2) and Z r = l/(2cor). Evaluating
the logarithmic term in Eq. (58), we have for each polarization state /,
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where Z ± is the quasiparticle mode residue. In deriving Eq. (63), we have
neglected the variation of the (one-loop order) interaction rate F± which
for energies in the vicinity of co0± is ~@(e2Tlog{qD/\cop — u>0± |)), wher
qD~eT is the Debye momentum.(16)

Both the electron and the photon excitation spectra exhibit collective
modes at small momenta. However, the low energy modes contribute to
the total entropy in very different orders in the coupling constant. The con-
tribution from long wavelength modes of the electromagnetic field has been
calculated by Akhiezer and Peletmniskii;(6) the result is that the sum of
longitudinal plasmon oscillations and continuum modes contributes to the
correlation term in the entropy, of order e3T3. We can easily understand
this order of magnitude by a power counting argument. Concentrating on
the small energy phase space q, coq < qD in Eq. (51), the contribution from
longitudinal modes to the correlation entropy per unit volume is

With n ~ T/coq, the integral over wq is easily evaluated by use of the
relation

Then, with PL~ –
2
D and DL~1/q2, we have Sb/V~(d/dT)T\dq q2

(-q2
D/q2+ \og(l + q%/q2)) ~ q3

D~ e3T3. Note that if one attempts a pertur-
bative expansion of the log term, one finds spurious infrared divergences.
As one finds from similar arguments, the transverse contribution is higher
order in the coupling, at least ~e6T3, see ref. 29. The small energy modes
in the electron spectrum give a contribution of order e5T3. We can see this
from Eq. (34), where

For small energies and momenta, p, u)p~mf~'eT, we have df/dT~cop/T
2,

we also have, to one-loop order, E±,r±~m2lp, and Re G± ~ 0(1/p).
Thus, SfjV~rriflT2 ~ e5T3. Again, spurious infrared divergences appear if
one attempts a perturbative expansion of the log term.

Although the one-loop approximation is mathematically tractable, it
has important limitations. To take into account correctly the low energy
part of the electron spectrum, which enters only in order e5T3, one needs



to consider ^-diagrams of higher orders, such as the one depicted in Fig. 3,
contributing at least in order e4. Also, the diagram of Fig. 1 does not
always provide the correct width for the entropy spectral functions
evaluated close to the quasiparticle modes. For instance, the lifetime of a
photon mode of energy ~ T is limited by Compton scattering and inverse
pair annihilation. The self-consistent approximation of Fig. 1 includes only
the direct terms of these processes, as can be seen by considering an elec-
tron self-energy insertion in one of the fermion lines of the bubble diagram
shown in Fig. 2 and then taking the imaginary part of the corresponding
photon self-energy. The cross terms arise from the imaginary part of the
photon self-energy obtained by removing one photon line in Fig. 3. Finally,
in calculating the widths of low energy modes, one also needs to include
vertex corrections, as described by the "Hard Thermal Loop" perturbation
scheme, see ref. 14.

We conclude by stressing the fact that our analysis of the entropy
provides a framework for studying effects of the infrared structure in the
fermion propagator on thermodynamical quantities. Kim et al. have
proposed, in the context of the fractional quantum Hall effect,(18) that one
should be careful in calculating thermodynamical quantities by summing
over fermion degrees of freedom, since by doing so, one may encounter
infrared divergent terms. Kim et al. attribute this problem to the fact
that the composite fermion propagator is not a gauge invariant quantity
and suggest that the thermodynamical quantities should be calculated
instead by summing over boson degrees of freedom only. In the present
analysis, the dangerous term is the first component of Sy, ~ £ p f (da>pl2n)
df/dTReGr, with L oc e2Tlog(qD/\(op-p\), and it does not lead to a
divergence, as the principal part §-dx\og\x\/x vanishes. This term is
actually finite and is part of the exchange entropy term, of order e2. On the
other hand, for energies cop in the vicinity of p, both the spectral densities
A^r/((cop-p)2 + (r/2)2) and A,*f3/2((cop-p)2 + (r/2)2)2 vanish as
~ l / r ~ l o g - 1 \cop — p\, as (op~ p. This logarithmic behavior is sympto-
matic of a breakdown of perturbation theory. In a future publication we
will examine corrections in the free energy similar to those considered in
the calculation of the fermion lifetime in a hot plasma.(16)
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